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1. Context: The shifting demands for food and land-use  

In many ways the history of agriculture has been a success story. The ability to modify the 

environment, grow crops, and domesticate livestock, have allowed societies to become more complex 

and  contributed to the expansion of civilizations (Lev-Yadun, Gopher, and Abbo 2000; Zeder 2011). 

The increase in food production during the 20th century eliminated or at least greatly reduced the risk 

of famines in most world regions. At the global scale food production outpaced population growth. 

The progress, that was made during the Millennium Development Goals (MDGs) towards the objective 

of halving the prevalence of hunger between 1990 and 2015, nurtured the ambition of the successive 

Sustainable Development Goals (SDGs) to achieve universal food security by 2030. 

The demands on and context for agriculture are however changing. There is some debate whether 

with the arrival of agriculture and despite the ultimate increase in caloric supply and food security, the 

quality of diet may have deteriorated during the transition from hunter gather societies (e.g. Larsen 

2002). The legacy of these choices are still present in our discussions about the relationship between 

agricultural produce, diets and human health. It is not only about supplying sufficient calories per 

capita, it also about improving diets. The recent declining trends in prevalence of hunger that were 

observed over the last decades have recently grinded to a halt. The absolute number of people 

suffering from hunger is increasing again, over 820 million people experience chronic hunger today, 

while in parallel a worldwide rise in obesity is observed (FAO et al. 2019). 

Not only are food systems confronted with the shifting diets of a growing population due to increasing 

affluence and global inter-connectedness, but they also play a central role in addressing key 

environmental challenges. Agricultural activities are vulnerable to climate change, while according to 

recent estimates, agriculture alongside forestry and other land-use contributes around 23 percent of 

the global total greenhouse gas emissions from human causes (IPCC, 2019). Agricultural activities and 

land-use changes are also a major driver of global biodiversity loss, which due to human activities is 

now estimated to exceed the natural background rate of extinction 1000 fold (Pimm et al. 2014). 

With human activities now dominating earth system processes at a global scale (Crutzen 2002), 

strategic decisions on land-use play a central role in transitions towards sustainable development 

pathways. Agricultural activities have to be viewed as embedded within the broader food and land-

use systems, which have to be transformed (Schmidt-Traub, Obersteiner, and Mosnier 2019; Sachs et 

al. 2019)  if we want to meet the challenges of the Anthropocene (Crutzen 2002) where humankind 

holds the key sustaining or undermining the earth’s life support systems (Rockström et al. 2009).  

The report of the Food and Land-Use Coalition argues that 10 transitions need to take place to put 

food and land-use systems on a sustainable path (FOLU 2019).  IIASA’s Global Biosphere Management 

Model (GLOBIOM) has previously been employed to investigate nexus issues relating to food security, 

land-use, climate change and environment (Valin et al. 2013; Havlík et al. 2014; Frank et al. 2018; 



 

Leclère et al. 2018; Hasegawa et al. 2018). The following report describes how GLOBIOM has been 

applied to contribute with an integrated assessment modeling approach to the analytics of the FOLU 

report.  

2. The Global Biosphere Management Model: An Overview 

GLOBIOM is a global recursive dynamic bottom-up partial equilibrium model integrating the 

agricultural, bioenergy and forestry sectors (Havlík et al. 2014; 2011). It employs a linear programming 

techniques based on the spatial equilibrium approach developed by Takayama and Judge (1971). 

Based on a welfare maximizing objective function an agricultural and forest market equilibrium is 

computed subject to resource, technology, demand and policy constraints. 

For detailed assessment of forest dynamics, in particular in response to climate change mitigation 

policies, GLOBIOM is often linked with the G4M model (Kindermann et al. 2006), a global forest model 

which supplies spatially explicit simulations of the forest sector and projected emissions from land-

use change. Lauri et al. (2019) provide a detailed description of the representation of the forest sector 

in GLOBIOM and the linkage to G4M. For economy wide integrated climate change mitigation 

assessments, GLOBIOM/G4M integrated assessment modeling has been coupled to the energy system 

model MESSAGE (Riahi et al. 2012), which provides the trajectories for carbon prices and biomass for 

energy demand over time (Fricko et al. 2017). 

In the version of GLOBIOM used for the FOLU report, results are initially calculated for 37 regions, 

either representing large countries or country aggregates, and then aggregated to 10 global regions 

(Middle East and North Africa, sub-Saharan Africa, the former Soviet Union, Latin America and 

Caribbean, North America, South Asia, Europe, Oceania, Eastern Asia, and Southeast Asia). A market 

equilibrium is established for each product and region based on endogenous adjustments in market 

prices and demand and supply quantities as well as trade. The model calculates the optimal land-use 

allocation by maximizing consumer and producer surplus.  

GLOBIOM is calibrated to the FAOSTAT database, provided by the Food and Agriculture Organization 

of the United Nations (http://www.fao.org/faostat/en/#data) for the year 2000 (average 1998 - 2002) 

and is solved in 10-year time-steps until 2050. The starting conditions for each time period are 

informed by the solutions of the simulations for the previous period. In addition to the market balance 

constraint which ensures that regional production plus imports equals regional consumption plus 

exports, additional constraints can be added (e.g. on land-use changes from one type to another) to 

examine the effect of particular strategies on the results.  

On the demand side, a representative consumer is modeled for each region mimicking the behavior 

of the aggregate population for a respective region. Food demand projections are based on the 

interaction of three different drivers: population growth, income per capita growth, and response to 

prices. Price effects are endogenously computed while the first two drivers are exogenously 

introduced into the model. 

On the supply side, the model is built on a spatially explicit, bottom-up set-up. The basis is a detailed 

disaggregation of land into so-called Simulation Units. Simulation Units are clusters of pixels that 

belong to the same country, have similar altitude, slope and soil characteristics and cannot exceed the 

size of 0.5° x 0.5° (Skalský et al. 2008). In the model version applied for the work at hand, simulation 



 

units are re-aggregated to 2° x 2° cells, disaggregated by country boundaries and by three agro-

ecological zones. 

Nine different land cover types are considered in the standard model: cropland, grassland, managed 

forest, unmanaged forest, short rotation plantations, other natural vegetation, other agricultural land, 

wetland and non-relevant land. Transition is modeled between the first six land cover types, while the 

remaining three are assumed to be constant over time. 

Economic activities are associated with cropland, grassland, managed forest and short rotation 

plantations. In principle, each spatial simulation unit can contain all nine land cover types. Land 

conversion over the simulation period is endogenously determined for each spatial simulation unit 

within the available land resources. Such land use change movements imply conversion costs, which 

are increasing with the area of land that is converted and which are taken into account in the producer 

optimization behavior. Land conversion possibilities are further restricted through biophysical land 

suitability and production potential, as well as through a matrix of potential land cover transitions. 

The latter defines which land type can be transformed into which other land type. 

For the model version applied in the FOLU project several adjustments have been made to the model, 

including the introduction of new land cover classes (i.e., afforested land, restored land, abandoned 

land). Furthermore, seafood, aquatic and oceanic based production systems have been introduced as 

an additional modeling component to allow for an examination how shifts in the production and 

consumption-based proteins may affect land-use dynamics. 

GLOBIOM represents globally 18 major crops, i.e. barley, beans, cassava, chickpeas, corn, cotton, 

groundnut, millet, palm oil, potato, rapeseed, rice, soybean, sorghum, sugarcane, sunflower, sweet 

potato, wheat. 

Land use data for crops are based on FAOSTAT statistics, which are introduced at the national level 

and which are spatially allocated using data from the Spatial Production Allocation Model (SPAM; 

http://mapspam.info/), which provides estimates of crop distributions (You and Wood 2006). 

Production technologies, as indicated by SPAM data, are specified through fixed proportions 

production functions. Four different management systems (irrigated – high input, rainfed – high input, 

rainfed – low input and subsistence) are simulated by the biophysical process-based crop model EPIC 

(Williams 1995; Izaurralde et al. 2006) and fitted to national averages of FAOSTAT yield data for around 

2000 (average 1998 - 2002). Over the course of a scenario, regional yields are changing with changes 

in the management system, spatial reallocation, or an exogenous component representing technical 

change. 

The representation of irrigated cropland production systems considers both the biophysical 

suitability and irrigation water requirements of crops at a monthly level which is simulated by EPIC 

and harmonized with the country-level statistics for water withdrawn for irrigation available from 

AQUASTAT, FAO’s global information system on water resources and agricultural water 

management.(FAO 2017; Palazzo et al. 2019) GLOBIOM represents the spatial and temporal nature of 

water demand and supply by building on the work from Sauer et al. (2010) to consider the suitability 

of irrigation systems and crops by considering the biophysical conditions as well as the physical and 

economic suitability of crops for irrigation (Palazzo et al. 2019; Pastor et al. 2019, 2014; Palazzo et al. 

2017). The water balance for irrigation is spatially explicit for both the irrigation water demand and 

water supply availability and takes into account the source of water used for irrigation (surface water 



 

and groundwater), seasonality of water, environmental flow requirements, and the socioeconomic 

and climate change impacts on water availability and demand. 

The livestock sector component of the model uses the International Livestock Research Institute 

(ILRI)/FAO production systems classification. Four production systems are considered: grassland 

based, mixed, urban and other. The first two systems are further differentiated by agro-ecological 

zones: arid/semi-arid, humid/sub-humid and temperate/tropical highlands. Monogastrics are split 

into industrial and smallholder farming systems. Eight different animal groups are considered: bovine 

dairy and meat herds, sheep and goat dairy and meat herds, poultry broilers, poultry laying hens, 

mixed poultry and pigs. Animal numbers are at the country level consistent with FAOSTAT. The 

livestock production system parameterization relies on the dataset by Herrero et al. (2013).  

For the forest sector, five primary forest products are represented in the GLOBIOM model (saw logs, 

pulp logs, other industrial logs, fuel wood and biomass for energy). For projecting forest related CO2 

emissions and sinks in this report, we apply in a first step the Global Forest Model (G4M). In a second 

step, afforestation and deforestation trends as estimated by G4M are implemented into GLOBIOM. 

Trends in afforestation are implemented via a lower bound for different climate change mitigation 

pathways on a regional level. Deforestation trends from G4M are usually estimated higher compared 

to a stand-alone version of GLOBIOM since only a share of total deforestation is caused by agriculture. 

The difference of the two estimates is implemented exogenously in GLOBIOM and the remainder of 

the deforested land which is not transformed into agricultural land is transformed into other natural 

land. For this report, G4M is calibrated to match the average afforestation and deforestation rates 

over the historical period on the country scale. For the tropical countries we apply data from Hansen 

et al. (2013) (Hansen et al. 2013), for the Kyoto Protocol Annex-I countries we apply data obtained 

from the country submission to the UNFCCC (UNFCCC 2015) and for the remaining countries we apply 

data obtained from the FAO’s 2015 Global Forest Resource Assessment (FAO 2015).  In this context it 

should be noted that Hansen et al. (2013) data on forest loss and gain should be considered as the 

upper estimate of deforestation and afforestation rates as they include temporary forest loss and 

subsequent regeneration or replanting of the forest (Curtis et al. 2018). 

In the seafood sector, GLOBIOM covers all finfish, crustaceans, and mollusks in the International 

Standard Statistical Classification of Aquatic Animals and Plants (ISSCAAP) Divisions 1-5. The model 

differentiates production between three production systems (capture, extensive aquaculture, and 

intensive aquaculture), three aquatic environments (marine, brackish water, and fresh water), 27 large 

spatial units (FAO Major Fishing Area for Statistical Purposes), and 25 species groups. Seafood trade 

and consumption is disaggregated into 11 species groups. In contrast to trade in other commodities 

in the model, seafood trade is not specified bi-laterally due to lack of the necessary global data.  

GLOBIOM computes bilateral trade flows (except for seafood products) endogenously through the 

minimization of total trading costs. As an underlying assumption, goods are assumed to be 

homogenous which means that within the same industry goods are perfect substitutes and have the 

same price.  

When bilateral trade flows between two regions are observed in the base year, a linearized constant 

elasticity trade cost function represents further trade relations between these two regions. It is 

required that the difference in prices between trading partners is equal to marginal trade costs (i.e., 



 

transportation costs plus tariffs). If no trade between two regions is observed in the base year, trade 

relations are represented by a quadratic trade cost function.  

Trade in GLOBIOM is modeled in a recursive dynamic way, which means that in every solution period 

the initial traded quantity between two regions is set equal to the solution of the previous period. This 

way, the initial trade costs are combined with the updated quantity in every solution period. 

 

 

3. Scenarios and Assumptions  

Two scenarios are considered. A business as usual scenario (“Current Trends”), which assumes a 

continuation of present trends and a “Better Future” Scenario, where development and environmental 

objectives are collectively addressed. 

The ‘Better Futures’ scenario implements a series of key policy recommendations, informed by the 

critical transitions of the FOLU Global Report, to model the outcomes for the food and land use system. 

A summary of the key distinctions between the two scenarios is provided in Table 1. Each scenario is 

individually discussed in additional detail in sections 3.1. and 3.2. 

 

  



 

Table 1: Summary of Model Scenario Assumptions 

 Current Trends Better Futures 

 

Climate 

Change 

mitigation 

policies 

 

• Increasing global final energy demand 
(+52 percent from 2020 to 2050) 

• Continuation of current nationally 
implemented climate policies 

• Energy from biomass going down from 
current levels (56 EJ) to 41 EJ in 2050 with 
lower traditional fuel wood consumption  

• Reduction of global final energy demand by 40 percent 
(between 2020-2050) (Grubler et al., 2018)  

• Staying with the limits of the 1.5 °C target 
• Carbon price of $129 per tCO2-eq in 2050 (increasing value 

from 2030 on) 

• Additional energy demand from biomass of 11 EJ in 2050 
compared to Current Trends 
 

 

Food loss and 

waste 

improvements 

 

• Food loss and waste (FLW) amounts to 31 
percent global average based on dry 
matter production of modelled products 
in 2010 (based on Gustavsson et al., 
2011).  

• The regional and product specific shares 
of FLW are kept constant over time 

• There is a 25 percent reduction of food loss and waste 
compared to Current Trends in 2050 

• The reduction is modelled as a linear reduction from 2020 
onwards 

 

Technical 

Progress 

 

 

• 44 percent yield growth 2010-2050 
(global average across crops) based on 
historical trends.  

• Closing crop yield gaps by 25 percent with current 
technologies + additional 0.1 percent annual growth for 
technical change 

• Overall this results in a 56 percent yield growth 2010-2050 
(global average) 

Biodiversity 

conservation 

and 

restoration 

policies 

• No additional conservation or restoration 
effort beyond 2010 

• Better management of protected areas (preventing BII 
decreasing land use change in existing and new protected 
areas) and expansion of protected areas in 2020 to all 
remaining wilderness areas and key biodiversity areas 

• Development of incentives for restoration and landscape-
level land use planning: subsidy for positive changes (and tax 
for negative changes) in biodiversity, with progressively 
increasing value from 2020 to 2050 (reaching 300$/ha of 
biodiverse land in 2050). 

Healthy diets 

 

• Future demand patterns follow past 
consumption trends 

• Global population changes its diets to follow the dietary 
recommendations of the planetary health diet (Willet et al., 
2019).  

• In addition, declines in overconsumption and food loss and 
waste reduction at the consumer level in high-income 
countries allow food supply to decrease to an average level of 
3000 kcal/cap/day by 2050 

Food Security • No specific policies • Additional food production to achieve universal food security 
and SDG 2 target by 2030  

Ocean 

proteins 

 

 

 

 

• Marine capture fishing pressure 
continues at current levels, implying that 
production decreases through 2050 

• Freshwater capture and marine 
aquaculture stable at current levels 

• Aquaculture fishmeal and fish oil feed 
requirements remain at current levels  

• Freshwater and mollusk aquaculture 
growth slows down  

• Marine wild capture reform of half of global stocks, leading to 
stable production through 2050 

• Freshwater capture stable at current levels 
• Aquaculture fishmeal and fish oil feed requirements decrease 

50 percent by 2050 
• Marine aquaculture doubles by 2050  

• Freshwater aquaculture growth continues at current levels  
• Mollusk aquaculture growth accelerates. 

Afforestation 

and 

Deforestation 

 

 

 

• Afforestation and deforestation trends 
calibrated to historical data  

• Afforestation and deforestations patterns are driven by the 
low energy demand pathway assumptions (Grubler et al., 
2018)  

• Zero net deforestation after 2020, due to the application of a 
carbon tax  

 
Trade 

 

 

 

• No policy change compared to 2010. • 50 percent tariff cut within Sub-Sahara Africa 
• Trade policies unchanged for other countries 

 



 

3.1. Current Trends scenario 

The Current Trends scenario draws on the Shared Socioeconomic Pathways (SSPs) (O’Neill et al. 

2017; Keywan Riahi et al. 2017), which describe five broad level narratives and socioeconomic 

pathways of future development. The Current Trends scenario emulates the “Middle of the Road” 

Scenario (SSP2), where social, economic and technological trends represent a continuation of 

historical patterns, development progress is uneven, some gains in resource use and energy efficiency 

are made over time, but environmental degradation remains an issue (see Riahi et al. (2017) for a 

synthesis). In the standard SSP2 scenario, population growth is moderate and stabilizes by mid-

century. Projections for income growth and SSP2 scenario assumptions with respect to land use are 

described in detail in Fricko et al. (2017). For this report, the population data has been adjusted to 

include projections from the University of Washington’s Global Burden of Disease database to 

facilitate a feedback loop from a global transition to healthier diets on population trends. 

Regarding technical progress in crop production over the course of the scenario, exogenous yield 

growth shifters are applied. Yield response functions to GDP per capita for 18 crops were estimated 

using a fixed effects model with panel data. The response to GDP per capita was differentiated over 

four income groups oriented at World Bank’s income classification system (i.e.: <1.500, 1.500-4.000, 

4.000-10.000, >10.000 USD GDP per capita). Country-level yield data was provided from FAOSTAT, 

while GDP per capita was based on World Bank data (1980-2009). A detailed discussion of the 

methodology is presented in Havlík et al. (2012) and Herrero et al. (2014).  

Technological change in the livestock sector is represented by feed conversion efficiencies. Feed 

conversion efficiency projections were quantified as part of the ANIMALCHANGE project (Herrero et 

al. 2014; Soussana 2012) based on past trends and biophysical feasibility. More details and 

quantification of the SSP2 scenario are presented in Herrero et al. (2014) and Fricko et al.(2017). 

Projections for food demand and diets in the Current Trends scenario are based on the assumptions 

that the future demand patterns follow the past consumption trends. Food demand increase due to 

rising global population, but also following income increase from economic growth, and a switch to 

higher standard food products (meat, fish, etc.) and more processed products (Valin et al. 2014). Our 

assumptions on future diets in this scenario follow those from FAO at horizon 2050 (Alexandratos and 

Bruinsma 2012). Under this scenario, food security is expected to only slowly improve, as food supply 

increases but no specific improvement is observed in terms of inequality of food distribution, which 

still lets a significant share of the population go undernourished by 2050 (Hasegawa et al. 2015). 

Additionally, no notable food waste and losses management policies are considered under this 

scenario, and the share of these in consumption and food supply chains (Gustavsson, Cederberg, and 

Sonesson 2011) are assumed to stay constant. 

Regarding ocean proteins, the Current Trends scenario rests on the analysis of University of California 

Santa Barbara emLab provided to Systemiq as a part of this project. This analysis indicates that if 

fishing efforts and pressures continue at current levels without a reform in the management of global 

fisheries, the status and the overfishing of global fish stocks will further deteriorate, and as a result 

the global annual marine capture production will decline from current levels of 75-80 million metric 

tons (Mt) (live-weight equivalent) to approx. 61.7 Mt in 2050. We further assume that global 

freshwater and inland capture production will remain at current levels through 2050. As a result of 

the decline in marine catches, which are the primary source of fishmeal and fish oil, the scenario 



 

results in decreased availability of these two key ingredients in the diets of farmed fish, especially 

carnivorous ones. In addition, in the absence of large investments into the aquaculture sector, the 

recent progress in aquaculture feed efficiency improvements is halted, and the feed requirements of 

farmed fish in the model are assumed to remain stagnant at their 2020 levels. For both of these 

reasons, the options of further growth in the output of fishmeal and fish oil intensive aquaculture 

species is severely limited. Marine aquaculture production, which heavily relies on these feeds, 

remains at current levels of approximately 11.7 Mt. The production of freshwater fishmeal and fish oil 

intensive species grows by a mere 3 Mt to 2050. There are only two truly significant sources of growth 

in the supply of ocean-based protein. One is non-fishmeal and fish oil intensive freshwater 

aquaculture, which grows by 30 Mt to 2050. The other is bivalve/mollusk aquaculture, which grows 

by 11 Mt. However, this growth rate remains lower compared to what has been observed in the sector 

in recent years, reflecting the saturation of demand and growing constraints on further expansion of 

bivalve farms. 

3.2. Better Futures scenario 

The Current Trends baseline is contrasted with a transformative “Better Futures” Scenario, where the 

dimensions of the food and land-use system are approached in an integrated manner with the aim of 

accounting for trade-offs and synergies between key development and environmental objectives in 

the land-use space. The following sections highlight the different assumptions between the Current 

Trends scenario and the Better Future Scenario with regards to diets and food security, climate change 

mitigation, biodiversity, technical progress, food waste reduction and ocean protein.  

Diets and Food Security. In the Better Future Scenario, consumers are assumed to adopt more 

environmentally friendly and healthy diets at the time horizon 2050, and the sustainable development 

agenda towards 2030 is strictly enforced. Informed by SDG2, the aim is to achieve universal food 

security from 2030 onwards. We assume the global population changes its diets to follow the dietary 

guidelines from the EAT-Lancet Commission (Willett et al. 2019). These correspond to radical changes 

in the consumption of some products. For example, this implies for an adult male diet: 14 g of red 

meat (beef, pork) per capita day, 250 g of dairy products, 500 g of fruits and vegetables, 50 g of nuts 

(peanuts, tree nuts), and 75 g of soybean and other legumes. All regions are converging to these 

recommendations in their dietary mix by 2050. We additionally assume that overconsumption and 

food loss and waste reduction at the consumer level in high-income countries allow to decrease food 

supply to an average level of 3000 kcal/cap/day by 2050, a level to which developing countries also 

converge to. In addition, population undernourished in developing countries is assumed to receive an 

extra calorie supply corresponding to their food deficit to achieve SDG2 in 2030. The described 

assumptions reflect the basis for exogenous shifts of the demand function which are implemented 

into the model. The final results will deviate from these values, due to feedback effects from price 

changes. 

Food Loss and Waste. The primary policy goal is to achieve reduced food loss and waste by 2050 in 

order to alleviate the effect of increasing global food demand. This scenario is created in the model by 

exogenously reducing food loss and waste by 25% in the ‘Better Futures’ scenario, starting from values 

presented in Gustavsson et al. (2011) which are assumed to remain constant in the Current Trends 

scenario.  



 

Agriculture and Livestock. As noted above, the Current Trends scenario is guided by SSP2 driver 

assumptions. For the Better Futures scenario, we simulate a technical progress rate that closes 

regional yield gaps by 25% in 2050. Exogenous yield shifters from the Current Trends scenario are 

replaced with the respective shifters only if the technical progress rates are higher than under Current 

Trends assumptions, drawing on the methodology of Valin et al. (2013). In addition, a yield growth 

trend of 0.1% per year is assumed for all crops and regions, reflecting for example breeding successes 

or other technological and practice improvements. 

For the productivity of the livestock sector, the same assumptions are applied for the Better Future as 

under the Current Trends scenario, because we face a significant demand shift away from livestock 

products. In light of these developments, we assume that investment in the sector stagnates and no 

additional efficiency gains are created. 

Climate Change. The SSPs are complemented by Representative Concentration Pathways (RCPs), 

which define increases in atmospheric greenhouse gas concentrations and the expected radiative 

forcing. In the case of the Current Trends scenario, RCP6.0 has been selected, which represents a 

radiative forcing of 6 W/m2 and an approximate greenhouse gas concentration of 850 ppm CO2eq 

when emissions are projected to stabilize after the end of the century (van Vuuren et al. 2011) for a 

comparative overview of the RCPs). For the Better Futures scenario, we assume that we stay within 

the emission pathway of the 1.5 °C target and use RCP 2.6 to reflect this assumption. Both RCPs have 

been quantified by the climate model HadGEM2-ES and the crop model EPIC and projected crop yields 

in GLOBIOM are impacted accordingly, also taking into account CO2 fertilization effects (for more 

details see (Leclère et al. 2014). The described impacts refer only to the long-term climate change 

effects on crop yields. Potential impacts of increased climate variability and extreme events frequency 

are not accounted for. 

The Better Future Scenario explores the effects of realizing food security and improvements in diets, 

while also pursuing a development pathway that is in line with limiting global warming to 1.5 °C above 

preindustrial levels and halting and reversing biodiversity loss. The final results of the Better Future 

Scenario are based on the low energy demand (LED) pathway without BECCS deployment, based on 

an assumed 40% reduction in final energy demand through energy efficiency improvements by 2050 

(Grubler et al. 2018). Grubler et al. (2018) concluded that the rapid implementation of a LED pathway 

through transformational changes on the demand side reduces considerably the dependency on 

negative emission technologies, specifically bioenergy carbon capture and storage (BECCS). Following 

a LED pathway would allow to achieve the 1.5 °C target with limited additional energy demand from 

biomass of only around 11 EJ and a carbon price of 129 USD/t per CO2eq by 2050. 

For comparison, a second alternative 1.5 °C mitigation scenario was also considered. This alternative 

1.5 °C mitigation scenario is characterized by a medium increase in energy demand and requires wide-

spread deployment of negative emission technologies. This scenario results in an additional demand 

for 91.4 EJ from biomass for energy use by 2050 on top of the Current Trends baseline level of 41.3 EJ 

globally in 2050 and in a carbon price of 238 USD/t per CO2eq. 

Note that in all the scenarios above, biomass for bioenergy also includes a fixed contribution of 4.8 EJ 

from 1st generation biofuels in 2050, but these are not assumed to contribute largely to mitigation and 

are kept constant over scenarios. 



 

Forestry. Simulated decisions on deforestation, afforestation or continuation of current land-use in 

G4M are based on a comparison of net present values (NPV) of agriculture and forestry. Deforestation 

takes place if the agriculture NPV including the revenue from one-time selling of the deforested wood 

exceeds the forestry NPV. Afforestation occurs if the forestry NPV is greater than the agriculture NPV, 

there is free land for planting the trees and the environmental conditions allow forest growth. In 

climate change mitigation scenarios, a carbon tax for the carbon lost at deforestation and payments 

for the additional carbon accumulated due to afforestation are included in the forestry NPV and thus 

influence the land use change decisions. The Better Futures scenario is based on a Low-Energy-

Demand scenario (Grubler et al. 2018), which has been quantified with by G4M for the forest sector. 

Zero net deforestation (ZND) is a result of the mitigation policy (i.e. the application of a carbon tax) 

that is implemented in the Better Future Scenario. With a substantial carbon tax, deforestation 

reduces to a minimum and afforestation increases such that from 2030 on we already see a net 

increase in forest areas globally. 

Biodiversity. Aside from climate change, addressing biodiversity loss represents a major concern for 

more sustainable food and land-use systems and is hence a key feature of the Better Futures scenario.  

Biodiversity is a complex concept, as it entails the variety of life across scales, including, inter alia, 

diversity at the genetic, population, species and ecosystem levels. Often primary focus is placed on 

protecting biodiversity at the species level. Yet measures of species richness conceal that different 

species may be of different importance to ecosystem functioning. Focusing on maintaining 

biodiversity at the species level may also ignore the extinction of individual populations and associated 

local impacts. As the web of life is appreciated but incompletely understood, estimating the economic 

value of species and biodiversity is imperfect and fraught with uncertainty. These complexities should 

be kept in mind when considering modeling results on biodiversity. 

Nevertheless, it is important that proxy indicators of biodiversity are included in an integrated 

assessment of food and land-use systems. Land-use changes for agriculture and other human activities 

as well as unsustainable use of renewable natural capital, are major drivers for biodiversity loss, 

further compounded by human induced climatic change, pollution and other environmental changes. 

Solutions to addressing biodiversity loss and climate change require international and global scale 

efforts. International strategies focused on climate change alone, may promote solutions, which 

undermine biodiversity conservation efforts, e.g. by displacing biodiversity rich ecosystems with land 

for bioenergy.  

Using select biodiversity indicators, Leclere et al. (2018) explored through an integrated modeling 

approach how various supply and demand measures and combinations thereof could constrain land-

use changes and help “bending the curve” on biodiversity loss.  

For this report, we emulated this approach with a focus on the effects of land-use constraints, 

mitigation, and dietary shifts under the “Better Future” Scenario in comparison to the Current Trends 

scenario. The Biodiversity Intactness Index (BII) is used as primary performance indicator. The BII 

estimates how much of a region’s originally present biodiversity has been perturbed by humans, as 

measured by the local composition of wildlife communities, relative to if the region were still covered 

with primary vegetation and facing minimal human pressures (Scholes and Biggs 2005). We rely on 

the relationship between land use activities and BII modelled from the PREDICTS database of 

biodiversity and land use records (Leclère et al. 2018; Newbold et al. 2016). With most of the data 



 

being on insects and plants, this estimate of BII response to land use provides one of the few indicators 

not predominantly based on vertebrates. The Index ranges from 100–0% with 100 representing an 

undisturbed or pristine natural environment with little to no human footprint. The most recent global 

estimates suggest that the BII fell globally from 81.6% in 1970 to 78.6% in 2014. The BII is calculated 

for each grid cell of the model for the year 2000 as starting point for the projections under the Current 

Trends and Better Futures scenarios. 

For the Better Futures scenario the model applies two complementary strategies. First, we assume 

that all protected areas a) become better managed (so that any land use change that decreases BII 

cannot occur at any time after 2020) and b) increase in extent (to all Key Biodiversity Areas and intact 

Wilderness Areas, in addition to all areas currently protected under the World Dataset of Protected 

Areas). Second, we assume a pervasive effort to landscape- and regional- progressive reconfiguration 

of managed land towards restoration and reduced biodiversity impact, by applying a subsidy for 

positive biodiversity changes and a tax for negative changes. The subsidy starts at 10 USD/ha in 2020 

and grows exponentially to 300 USD/ha in 2050. The tax or subsidy applies to a change in the regional 

biodiversity stock that accounts for the extent to which different grid cells potentially hold more or 

less biodiversity, and the extent to which different land uses prevent this potential to materialize (see 

Leclere et al. (2018) for further detail). The model accounts only for land-use related biodiversity 

changes.  

The area restored for biodiversity purposes is assumed to correspond to forest type of vegetation in 

grid cells where this type of vegetation is best suited for biodiversity (e.g., excluding grassland 

ecosystems). To delineate these grid cells, we use the LUH2 information on whether natural 

vegetation is forested or not in a particular grid cell (for more details, see the technical documentation 

http://gsweb1vh2.umd.edu/LUH2/LUH2_v2f_README_v6.pdf). In these grid cells, the restored area 

is considered as a form of afforestation: it is however considered as slightly less performing at 

sequestrating carbon than G4M-infered, carbon sequestration-dedicated afforestation (which could 

rely on different species mix and management). The restoration-related afforestation (both area and 

carbon gain) are conservation-driven and occur in addition to the afforested areas inferred from G4M 

simulations. The afforested areas inferred from G4M are considered as equivalent to timber activities 

from a biodiversity standpoint, and therefore less beneficial than restored areas. In the results 

presented in the report, however, we combine the two different afforestation classes. 

Ocean protein. In the Better Futures scenario, through a concerted reform effort in the management 

of half of the world's marine fish stocks, by 2050, annual capture production is stabilized at a 

sustainable level of 75 Mt. Freshwater/inland capture remains stable at the current level of 12 Mt, 

same as in the Current Trends scenario. Continued investment in aquaculture technology and 

management results in a 50% decrease, relative to 2020, of aquaculture fishmeal and fish oil feed 

requirements by 2050. As a result, the growth of fishmeal and fish oil intensive aquaculture is much 

less constrained. Marine aquaculture production nearly doubles and reaches 22.4 Mt annually. 

Freshwater fishmeal and fish oil intensive aquaculture grows nearly twice as fast as in the Current 

Trends case, and annual production reaches 8.7 Mt. Freshwater non-fishmeal and fish oil intensive 

aquaculture grows slightly faster than in the Current Trends case by 40 Mt annually by 2050. 

Mollusk/bivalve production and consumption continues to grow and is boosted to 4% p.a. (as opposed 

to the average annual growth rate of the last ten years of 3.1%) due to policy incentives towards eating 

low carbon food. This results in an output of 65.2 Mt per year.  



 

Trade. In the context of the Better Future Scenario a globally moderate and open approach to global 

trade is maintained while facilitating increased interregional trade within Sub-Saharan Africa due to 

greater investments in connectivity across the continent. The model achieves this by halving the cost 

of tariffs within the Sub-Saharan Africa macro region and keeping all other tariffs constant. 

4. Main Results and discussions  

The results illustrate the benefit of an integrated approach to food and land-use systems in reaching 

multiple development and environmental objectives. Through the combination of supply and 

demand-based measures, there is the potential to reduce trade-offs between these objectives, which 

are currently present in many land-use systems, and instead strengthen synergies, allowing for the 

generation of multiple benefits. 

 

In comparison to the Current Trends scenario, we see strong land use changes taking place under the 

Better Futures scenario (Figure 1). Roughly 1.5 Gha (Giga hectare) of agricultural land which is 

projected to be used for crop and livestock production in the Current Trends scenario is projected to 

be used for other purposes in the Better Futures scenario in 2050. Most of the 1.5 Gha would be used 

as pasture land in the Current Trends scenario. Pasture land in our classification accounts for all the 

land that is significantly used for livestock production. Pastures without significant contribution to 

total livestock production are included in the category natural land since we assume that the impact 

of changes in livestock production will only be marginally impacting these areas. 

 

A combination of different drivers leads to these results in the Better Futures scenario. On the demand 

side, the main driver of land use change in the model is the shift towards the planetary health diet 

(which contains much lower livestock proteins than current diets in many regions). As the demand for 

livestock products is substantially reduced, this decreases also the need for grazing areas. 

Furthermore, pressure on agricultural land is alleviated due to lower feed crop requirements, while 

also overconsumption in high-income countries and food loss and waste are reduced. Together these 

projected developments have a greater effect than the demand on food production arising from the 

objective of meeting universal food security by 2030. Additionally, under the Better Futures scenario 



 

livestock proteins in human diets are substituted with ocean proteins, which are roughly 30% higher 

in 2050 than in the same year under the Current Trends scenario. 

On the supply side, the implementation of a carbon price shifts agricultural production towards less 

emission intensive production. This implies a shift towards more productive livestock systems and 

reduces the demand for pasture land (compare Havlik et al, 2014). The carbon price causes also almost 

a complete stop in global deforestation as of 2030 and incentivizes afforestation efforts. 

Technical progress induces yield increases of 56% between 2010 and 2050, while the Current Trend 

scenario assumes an increase of 44%. This reduces the amount of land that is needed for the same 

amount of crop production. 

The results presented in this paper do not include the impact of urban expansion on cropland and 

other land-use types. This is currently outside the scope of the model. Other available studies can 

provide some insight into the order of magnitude of change. A recent study by Bren d’Amour et al. 

2017 suggests that between 2000 and 2030 27-35 Mha of cropland will be lost due to urbanization. 

Another study by He et al. (2019) quantifies urban expansion between 1992 and 2016 to 35 Mha 

globally. If urban land expansion continues to expand accordingly, scenario results would only be 

impacted marginally, and the main statements concerning the effects of the Better Future Scenario 

on land-use are not affected. 

The drivers described in the Better Future Scenario shape a solution space, where a) food security 

targets (i.e., the elimination of hunger) are reached, b) emission reduction targets for the land use 

sector in line with limiting global warming to 1.5 °C above pre-industrial levels can be realized, and c) 

at the same time the declining biodiversity trend can be stopped and the intactness of biodiversity 

towards the end of the scenario improved. 

In the Better Futures Scenario we reach carbon neutrality in the land use sector in 2050. The 

implementation of climate change mitigation measures is in line with limiting global warming to 1.5°C 

above preindustrial levels. The low energy demand (LED) pathway without BECCS deployment serves 

as a basis for the implementation, relying on an assumed 40% reduction in final energy demand 

through energy efficiency improvements by 2050 (Grubler et al, 2018). 

Yet, in the Better Futures scenario, emissions in 2050 are reduced to an even stronger extend because 

of the additional assumptions on dietary changes, technical progress, ocean proteins, and reduced 

food waste. These additional measures on the one hand reduce more emissions and on the other hand 

prevent an increase in food prices which usually would be expected in a pure mitigation scenario (for 

price effects of climate change mitigation compare Hasegawa et al. 2018). In fact, in the Better Futures 

scenario we see lower prices in 2050 in comparison to the same year in the Current Trends scenario. 

This holds for the average of all agricultural products at the global level. The strongest negative impact 

on prices, however, comes from livestock products while the scenarios would show increasing prices 

for some crops in some regions. 

Negative emissions only occur in the scenario due to afforestation or re-growth of other natural 

vegetation on areas used for biodiversity restoration. If land is simply abandoned without active 

management of re-growth, no sequestration effect would be accounted for in the model. In 2050 the 

Better Futures scenario shows that sequestration from afforestation and restoration (-4.4 GT CO2-eq 

per year) outweighs all the remaining positive emissions still occurring. Positive emissions are 



 

associated with agricultural production (2.3 GTCO2-eq/year) and other agricultural activities such as 

clear-burning of savannah and from crop residues (0.6 GTCO2-eq/year), whereby the latter (in 

contrast to agricultural production emissions) is not endogenously modelled and is assumed constant 

over time and thus, is likely to be overestimated in the Better Future scenario as it can be expected to 

be reduced as well. 

Deforestation emissions of almost 1.6 GTCO2-eq/year are still reported in the Better Futures scenario 

in 2050 despite the fact that deforestation almost completely stops as of 20301. The bulk of the 

remaining deforestation emissions can be attributed to soils and peatland that were deforested in 

earlier years and still continue to emit. In our scenarios we did not assume measures such as rewetting 

of these peat ecosystems to reduce CO2 emissions in later years since this process is currently not 

implemented in the model.  

For the scenarios calculated for the FOLU Global Report, afforestation and deforestation trends are 

calibrated to historical data on the country scale. For the tropical countries we apply data from Hansen 

et al.(Hansen et al. 2013), for the Kyoto Protocol Annex-I countries we apply data obtained from the 

country submission to the UNFCCC (UNFCCC 2015) and for the remaining countries we apply data 

obtained from the FAO’s 2015 Global Forest Resource Assessment (FAO 2015).   

The input data influence the result of the modelling regarding both, historical and projected land use 

change. In general, Hansen et al. (2013) data on forest loss and gain should be considered as the upper 

estimate of deforestation and afforestation rates as they include temporary forest loss and 

subsequent regeneration or replanting of the forest (Curtis et al. 2018). When calibrating our models 

to data from FAO’s 2015 Global Forest Resource Assessment (FAO, 2015) instead, we estimate 

emissions of 11.5 GTCO2-eq per year for 2010 for the whole land use sector (including agriculture, 

forestry and land use change), with 6 GTCO2-eq/year coming from deforestation instead of 9.1 

GTCO2-eq from deforestation, as estimated for the scenarios of this report. 

In the Current Trend scenario, a continuation of biodiversity losses approximately equal to that 

between 1970 and 2010 is projected between 2010 and 2050 (Figure 2). In contrast, the Better Futures 

scenario entails a reversal of this negative biodiversity trend due to habitat loss, and even a slight 

recovery by 2050. However, this reversal could not be sustained unless we avoid the large-scale use 

of bioenergy with carbon capture and storage for climate mitigation. 

In a different version of the Better Futures scenario, we replace the assumptions of the low energy 

demand pathway with assumptions also designed to reach 1.5 °C mitigation targets, but relying on a 

medium increase in overall energy demand and requiring wide-spread deployment of negative 

emission technologies. The effect of the large-scale production of bioenergy for BECCS would lead to 

a substantial amount of woody biomass plantations in the scenario (252 Million hectare globally in 

2050) which have a relatively poor biodiversity value and would prevent global biodiversity from 

recovering. 

                                                           
1 Stopping deforestation only refers to preventing that forest areas are continuously changed to other land 
uses. Forest, however, can still be managed and it is ensured that wood demand from industries is satisfied in 
all the scenarios. 



 

 

Taken together, the implementation of biodiversity policies (i.e., supporting better management 

practices of protected areas and the subsidy for positive biodiversity changes) together with the shift 

to healthy diets (including a substitution of meat proteins with ocean proteins), the reduced food loss 

and waste, and the increased crop yields, play a significant role in reducing biodiversity loss. In 

addition, the climate change mitigation scenario will play an important role. Besides the above 

described impact from bioenergy production, the implementation of a carbon tax causes an almost 

complete stop in global deforestation, incentivizes afforestation efforts, and reduces the demand for 

pasture land. Hence, it is the combination of demand and supply based measures to meet food and 

energy needs, which determines whether positive outcomes for biodiversity and climate mitigation 

can be realized. 

When interpreting the results of this study, important caveats need to be kept in mind. The model 

results are obviously dependent on and influenced by the input data. For example, for analysis 

concerning food supply, all of our calculations are based on the FAO Food Balance Sheets 

(http://www.fao.org/faostat/en/#data), which operate on the food availability and not on the food 

intake. The discrepancy between food availability and food intake is largely related to household 

domestic waste, but reliable data on the extent of waste and losses are relatively scarce. Therefore, it 

is not possible to derive from this study good projections on the level of food intake, and the model 

results should be compared with care to dietary surveys performed at national levels (see for more 

discussion on this issue Hawkesworth et al., 2010).  

Further, we assume that food security challenges can be solved by an increased availability. However, 

we do not look at other pillars of food security, such as food access, utilization and stability. Supplying 

extra calories corresponding to the food deficit can only be useful if the corresponding food is 

distributed to those in needs, and inequality of food access are consequently reduced. This is beyond 

the scope of this scenarios, but it is important to recall that only if the appropriate enabling structures 

at national and local level are provided will improved food availability also lead to desired outcome of 

improved food security. 



 

This underscores the importance to further contextualizing the global picture provided here. This 

study sought to examine the broad level possibilities. However, to obtain this picture a considerable 

level of aggregation is necessary. For example, the targets considered for food were designed as a 

globally universal mix of food products which does not take into account initial regional differences to 

build more tailored diets adapted to regional preferences and local production structure. 

Regarding the estimation of biodiversity trends, the model accounts for local impacts from restoration 

activities such as assisted or natural regeneration of habitats in areas previously used for agriculture 

or forestry. Over a few decades, the local abundance of wildlife species present before the land was 

put into production is expected to increase towards original levels, resulting in an increase in BII. 

Because some species may have gone extinct, and because the composition of population across 

species in restored areas differ from that of pristine vegetation, the BII values of restored areas are 

lower than that of pristine vegetation. As we do not model recovery dynamics and assume instead 

immediate recovery, the estimated BII improvements from restoration activities provides an 

optimistic boundary of how fast ecosystems might recover under restoration. 

Regarding the potentials for aquaculture expansion in GLOBIOM, it should be kept in mind that only 

feed inputs required for this type of production are taken into account, and therefore only limitations 

placed on aquaculture expansion by the availability of fishmeal, fish oil, and crop feeds are considered. 

In reality, there are other constraints (e.g. environmental, regulatory, logistical) at play, not covered 

by this analysis. Furthermore, there is a large amount of aggregation inherent in this type of a global 

report, for example in terms of regions, fish species, and production technologies. The exogenous 

shocks to capture production and the assumed limitations on aquaculture growth are applied evenly 

across the globe, whereas in reality, there would likely be a great deal of differentiation between 

different regions of the world.  

Finally, GLOBIOM is a partial equilibrium model, which does not represent the full economy of a 

country or region. Instead, the focus is placed on the detailed representation of select sectors, which 

are of particular relevance to food and land-use systems. This implies that economy wide feedbacks 

are not included. There is also limited representation of the impacts arising from some environmental 

changes. This applies for example to climate related feedbacks. While changes in average climatic 

conditions and associated effects on agricultural productivity can be considered to some extent, the 

analysis does not consider the implications of change in the exposure to climatic extremes and shocks 

as well as possible knock-on effects across sectors and regions.  

The Better Futures scenario illustrates the potential that the integrated pursuit of development and 

environmental objectives holds for maximizing synergies and minimizing trade-offs between various 

goals. Agricultural activities should no longer be considered in isolation but as integral part of a wider 

effort to attain sustainable food consumption and land-use practices. The full spectrum of demand 

and supply based efforts should be considered when implementing strategies and policies. This 

requires rethinking the relationship of measures across sectors. On the one hand, the analysis 

underscored that pursuit of objectives of one sector, e.g. improved human health through better diets, 

can help realize objectives in another, e.g. improved environmental and climate services due to 

reduced pressure on natural resources and land. On the other hand, it also illustrated that the 

aggressive pursuit of a singular objective, e.g. limiting global warming to 1.5 °C while meeting rising 

energy demand, can constrain or make solutions for another objective impossible, e.g. halting 

biodiversity loss in the face of massive deployment of negative emission technologies in the land-use 



 

space. A more balanced approach to limiting global warming offers solutions that also address 

biodiversity concerns, if measures to achieve 1.5 °C target are accompanied also with a focus on 

substantially lowering energy demand.  Hence, underscoring the value of systems-based approach to 

address these concurrent global challenges in the land-use space. 
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